Квантовый компьютер. Как квантовые компьютеры изменят мир Что может стать основой квантового компьютера

Заработок 01.03.2024
Заработок

Последние десятилетия компьютеры развивались очень быстро. Фактически на памяти одного поколения они прошли путь от громоздких ламповых, занимающих огромные помещения до миниатюрных планшетов. Стремительно увеличивалась память и скорость. Но наступил момент, когда появились задачи, неподвластные даже сверхмощным современным компьютерам.

Что такое квантовый компьютер?

Появление новых задач, неподвластных обычным компьютерам, заставило искать новые возможности. И, как альтернатива обычным компьютерам, появился квантовый. Квантовый компьютер - это вычислительная техника, в основу действия, которой положены элементы квантовой механики. Основные положения квантовой механики были сформулированы в начале прошлого века. Ее появление позволило решить многие задачи физики, которые не находили решения в классической физике.

Хотя теория квантов уже насчитывает второе столетие, она по-прежнему остается понятной только узкому кругу специалистов. Но есть и реальные результаты квантовой механики, к которым мы уже привыкли – лазерная техника, томография. А в конце прошлого века была разработана теория квантовых вычислений советским физиком Ю. Маниным. Через пять лет Дэвид Дойч обнародовал идею квантовой машины.

Существует ли квантовый компьютер?

Но воплощение идей оказалось не столь простым. Периодически появляются сообщения о то, что создан очередной квантовый компьютер. Над разработкой такой вычислительной техники работают гиганты в области информационных технологий:

  1. D-Wave – компания из Канады, которая первой начала выпуск действующих квантовых компьютеров. Тем не менее идут споры специалистов, насколько реально являются квантовыми эти компьютеры и какие преимущества они дают.
  2. IBM – создала квантовый компьютер, причем открыла к нему доступ для пользователей интернета для экспериментов с квантовыми алгоритмами. К 2025 году компания планирует создать модель, способную решать уже практические задачи.
  3. Google – анонсировала выпуск в этом году компьютера, способного доказать превосходство квантовых на обычными компьютерами.
  4. В мае 2017 г. Китайские ученые в Шанхае заявили, что создан самый мощный квантовый компьютер в мире, превосходящий аналоги по частоте обработки сигналов в 24 раза.
  5. В июле 2017 г. На Московской конференции по квантовым технологиям было заявлено о том, что был создан 51-кубитный квантовый компьютер.

Чем отличается квантовый компьютер от обычного?

Принципиальное отличие квантового компьютера в подходе к процессу вычисления.

  1. В обычном процессоре все вычисления строятся на основе битов, бывающих в двух состояний 1 либо 0. То есть, вся работа сводится к анализу огромного количества данных на предмет соответствия заданным условиям. В основу квантового компьютера положены кубиты (квантовые биты). Их особенностью является возможность быть в состоянии 1, 0, а также одновременно 1 и 0.
  2. Возможности квантового компьютера значительно возрастают, так как нет необходимости искать нужный ответ среди множества. В этом случае ответ выбирается из уже имеющихся вариантов с определенной долей вероятности соответствия.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Как устроен квантовый компьютер?

Устройство квантового компьютера базируется на применении кубитов. В качестве физического исполнения кубитов в настоящее время используются:

  • кольца из сверхпроводников с перемычками, с разнонаправленным током;
  • отдельные атомы, под воздействием лазерных лучей;
  • ионы;
  • фотоны;
  • разрабатываются варианты использования нанокристалов полупроводников.

Квантовый компьютер - принцип работы

Если с классическим компьютером в работе есть определенность, то на вопрос, как работает квантовый компьютер, ответить непросто. Описание работы квантового компьютера основывается на двух малопонятных для большинства словосочетаниях:

  • принцип суперпозиции – речь о кубитах, способных находиться одновременно в позиции 1 и 0. Это позволяет вести одновременно несколько вычислений, а не перебирать варианты, что дает большой выигрыш во времени;
  • квантовая запутанность – феномен, отмеченный еще А. Эйнштейном, заключающийся во взаимосвязи двух частиц. Говоря простыми словами, если одна из частиц имеет положительную спиральность, то вторая моментально принимает положительную. Такая взаимосвязь происходит вне зависимости от расстояния.

Кто изобрел квантовый компьютер?

Основа квантовой механики была изложена еще в самом начале прошлого века, как гипотеза. Развитие ее связано с такими гениальными физиками, как Макс Планк, А. Эйнштейн, Поль Дирак. В 1980 г. Ю.Антонов предложил идею о возможности квантовых вычислений. А уже через год Ричард Фейнеман в теории смоделировал первый квантовый компьютер.

Сейчас создание квантовых компьютеров в стадии разработок и даже трудно предположить, на что способен квантовый компьютер. Но абсолютно ясно, освоение этого направления принесет людям много новых открытий во всех областях науки, позволит заглянуть в микро и макромир, узнать больше о природе разума, генетики.

18 марта 2015 в 10:15

Немного о квантовых компьютерах и о том, изменят ли они нашу жизнь

Многие из нас слышали о квантовом компьютер, но что он собой представляет, а главное какие задачи с помощью него можно решать, известно далеко не всем. Квантовый компьютер уже несколько лет активно изучают лучшие умы мира; он даже появлялся на обложке журнала Time, с подписью: «Он обещает решить некоторые самые сложные проблемы человечества, при этом никто не знает, как он в действительности работает».

Сейчас компьютеры исследуют многие ученые и крупные компании, такие как Google, IBM, Microsoft и другие. По их словам, если такой компьютер все же удастся создать, то это будет настоящий прорыв, сравнимый с открытием классических компьютеров.

Квантовый компьютер и непреодолимые трудности

Квантовый компьютер - это вычислительное устройство, работающее по принципам квантовой механики, которую по праву можно назвать самым сложным разделом физики. Квантовая механика зародилась в начале 20-ого века, и изучает поведение квантовых систем и ее элементов. Квантовая частица может находиться в нескольких местах и состояниях одновременно, поэтому по определению квантовая механика полностью противоречит общей теории относительности. Но давайте не будем углубляться в науку, а вернемся к нашей главной теме - квантовому компьютеру.

В начале века выяснилось, что использование электрических схем для создания вычислительных устройств имеет свои границы, и все они практически были достигнуты. Сейчас же перед человечеством встают все новые и новые задачи, для решения которых классических компьютеров будет недостаточно. Самый простой пример такой задачи - это разложение больших чисел на множители. Для этой цели было построено большинство криптографических систем. Это покажется банальным но, если бы кому-то удалось быстро разложить большое число на простые множители, то для него стали доступны транзакции во всех банках мира.

Другая не менее важная задача, с которой современные компьютеры никогда не смогут справиться - это моделирование квантовых систем и молекул ДНК. Исходя из этого, можно сделать вывод, что создание квантовых компьютеров - весьма перспективное решение, которое позволит решить эти и многие другие проблемы.

Принцип работы квантового компьютера


Классический компьютер работает на основе транзисторов и кремниевых чипов, которые используют для обработки информации бинарный код, состоящий из нулей и единиц. Бит, как минимальная единица информации имеет два базовых состояния: 1 и 0. Изменения этих состояний можно легко контролировать: объекты могут либо находиться в конкретном месте, либо - не находится. Именно поэтому многие физические объекты внешнего мира можно перенести в виртуальный с помощью сложных комбинаций битов. Работа же квантового компьютера будет основываться на принципе суперпозиции, а вместо битов будут использоваться кубиты (квантовые биты), которые одновременно могут находиться во всевозможных состояниях (в 1 и 0 одновременно). По словам ученных, за счет этого квантовые компьютеры для определенных классов задач будут в миллионы раз мощнее нынешних. Сейчас уже описаны десятки всевозможных алгоритмов работы квантового компьютера, даже разрабатываются особые языки программирования.

По большому счету, мир использует квантовые технологии уже давно. Лазеры, томографы и сверхчувствительные микроскопы базируются на массовых эффектах, создаваемых большими группами квантовых частиц или волн, которые подчиняются законам квантовой механики. Основная же задача состоит в использовании этих эффектов для отдельных частиц, а не групп в целом.

Для чего нужен квантовый компьютер?


Пока ученные трудятся над созданием квантового компьютера, они одновременно ищут ему применение. Главным остается тот факт, что такой компьютер сможет моментально совершать вычисления и работать с большим объемом данных.

С помощью квантовых компьютеров можно оптимизировать множество процессов: от медицины и до машиностроения. Например, у людей появится возможность диагностировать рак на более ранних стадиях, или делать более сложные автопилоты. Как упоминалось ранее, с помощью квантового компьютера будет возможно быстро раскладывать большие числа на множители и моделировать молекулы ДНК. Также существует теория того, что квантовый компьютер будет справляться с задачами, которые обычный компьютер решить не в состоянии или потратит на это тысячи лет вычислений. Это, допустим, создание искусственного интеллекта или поиск разумных существ во Вселенной, кроме человека. В любом случае все ученные сходятся на том, что это создание такого компьютера будет настоящим прорывом, возможно, главным в истории человечества.

Исправление ошибок - основная проблема квантовых компьютеров


Ошибки в квантовых компьютерах можно разделить на два главных уровня. Ошибки первого уровня присущи всем компьютерам, в том числе и классическим. К таким ошибкам относится непроизвольная смена кубитов из-за внешнего шума (например: космических лучей или радиации). С этой проблемой недавно удалось справиться специалистам из компании Google. Для решения этой проблемы команда ученых во главе с Джулианом Келли создала особую квантовую схему из девяти кубитов, которые ищут ошибки в системе. Остальные кубиты отвечают за сохранность информации, таким образом, сохраняя ее дольше, нежели с использованием единичного кубита. Однако основная проблема никуда не делась, остается второй уровень ошибок.

Кубиты изначально по своей природе нестабильны, они мгновенно забывают информацию, которую вы хотите сохранить на квантовый компьютер. Под воздействием на кубит окружающей среды нарушается связь внутри квантовой системы (процесс декогеренции). Чтобы избавиться от этого, квантовый процессор нужно максимально изолировать от воздействия внешних факторов. Как это сделать? - пока остается загадкой. По словам экспертов, 99% мощности такого компьютера уйдет на исправления ошибок, и лишь 1% хватит для решения любых задач. Конечно, от ошибок не удастся избавиться полностью, но если минимизировать их до определенного уровня, квантовый компьютер сможет работать.

Насколько человечество близко к созданию квантовых компьютеров?


Дать ответ на этот вопрос сейчас очень сложно - практически невозможно. Новости о прорывах в этой сфере появляются регулярно, но нельзя сказать, что они глобальные. В создании квантовых компьютеров заинтересованы все: начиная военными и заканчивая технологическими компаниями. Компания D-Wawe, с которой активно сотрудничает Google и NASA, заявляет, что создала процессор с 84 кубитами, но критики,

January 29th, 2017

Для меня словосочетание "квантовый компьютер" сравнимо например с "фотонным двигателем", т.е это что то очень сложное и фантастическое. Однако читаю сейчас в новостях - "квантовый компьютер продается любому желающему". Странно, то ли под этим выражением теперь подразумевают что то другое, то ли это просто фейк?

Давайте разберемся подробнее...


КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.


В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.


Основа алгоритма Шора: способность кубитов хранить несколько значений одновременно)

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических.


Если сказать простыми словами, то: "квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Другими словами, если вы посчитаете 2+2, то 4 получится только с некоторой долей точности. Точно 4 вы не получите никогда. Логика его процессора совсем не похожа на привычный нам процессор.

Существуют методы посчитать результат с заранее оговоренной точностью, естественно с увеличением затрат машинного времени.
Этой особенностью и определяется перечень задач. И эта особенность не афишируется, а у публики создается впечатление, что квантовый компьютер, это тоже, что и обычный PC (те же 0 и 1), только быстрый и дорогой. Это принципиально не так.

Да, и еще момент — для квантового компьютера и квантовых вычислений в целом, особенно для того, чтобы использовать "мощь и быстродействие" квантовых вычислений — нужны особые, специально под специфику квантовых вычислений разработанные алгоритмы и модели. Поэтому сложность применения квантового компьютера не только в наличии "железа", но и в составлении новых, до сих пор не применявшихся методик расчета. "

А теперь снова перейдем к практической реализации квантового компьютера: уже ведь некоторое время существует и даже продается коммерческий 512-кубитный процессор D-Wave !!!

Вот, он, казалось бы, настоящий прорыв!!! И группа солидных ученых в не менее солидном журнале Physical Review убедительно свидетельствует, что в D-Wave действительно обнаружены эффекты квантовой сцепленности.

Соответственно, данное устройство с полным основанием имеет право именоваться настоящим квантовым компьютером, архитектурно вполне допускает дальнейшее наращивание числа кубитов, а, значит, имеет замечательные перспективы на будущее… (T. Lanting et al. Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X 4, 021041 (2014) (http://dx.doi.org/10.1103/PhysRevX.4.021041))

Правда, чуть позже, другая группа солидных ученых в не менее солидном журнале Science, изучавшие ту же самую вычислительную систему D-Wave, оценивали ее сугубо практически: насколько хорошо это устройство выполняет свои вычислительные функции. И эта группа ученых столь же обстоятельно и убедительно, как и первая, демонстрирует, что в реальных проверочных тестах, оптимально подходящих для этой конструкции, квантовый компьютер D-Wave не дает никакого выигрыша в скорости по сравнению с компьютерами обычными, классическими. (T.F. Ronnow, M. Troyer et al. Defining and detecting quantum speedup. SCIENCE, Jun 2014 Vol. 344 #6190 (http://dx.doi.org/10.1126/science.1252319))

По сути дела, для дорогущей, но специализированной "машины будущего" не нашлось задач, где она могла бы продемонстрировать свое квантовое превосходство. Иначе говоря, оказывается под большим сомнением сам смысл весьма недешевых усилий по созданию подобного устройства…
Итоги таковы: сейчас в научном сообществе уже нет никаких сомнений, что в процессоре компьютера D-Wave работа элементов действительно происходит на основе реальных квантовых эффектов между кубитами.

Но (и это чрезвычайно серьезное НО) ключевые особенности в конструкции процессора D-Wave таковы, что при реальной эксплуатации вся его квантовая физика не дает никакого выигрыша в сравнении с обычным мощным компьютером, имеющим специальное программное обеспечение, заточенное под решение задач оптимизации.

Попросту говоря, не только ученые, тестирующие D-Wave, пока не смогли увидеть ни одной реальной задачи, где квантовый компьютер мог бы убедительно продемонстрировать свое вычислительное превосходство, но даже сама компания-изготовитель понятия не имеет, что это может быть за задача…

Все дело в особенностях конструкции 512-кубитного процессора D-Wave, который собирается из групп по 8 кубитов. При этом, внутри этих групп по 8 кубитов они все напрямую сообщаются между собой, а вот между этими группами связи очень слабые (в идеале же ВСЕ кубиты процессора должны напрямую сообщаться между собой). Это, конечно, ОЧЕНЬ существенно снижает сложность построения квантового процессора... НО, отсюда нарастает масса прочих проблем, замыкающихся в финале и на очень недешевую в эксплуатации криогенную аппаратуру, охлаждающую схему до сверхнизких температур.

Так что же нам предлагают сейчас?

Канадская компания D-Wave объявила о начале продаж своего анонсированного в сентябре прошлого года квантового компьютера D-Wave 2000Q. Придерживаясь собственного аналога закона Мура, в соответствии с которым количество транзисторов на интегральной схеме удваивается каждые два года, D-Wave разместила на КПУ (квантовом процессорном устройстве) 2,048 кубитов. Динамика роста числа кубитов на КПУ за последние годы выглядит так:

2007 — 28

— 2013 — 512
— 2014 — 1024
— 2016 — 2048.

Причем в отличие от традиционных процессоров, ЦПУ и ГПУ, удвоение кубитов сопровождается не 2-кратным, а 1000-кратным ростом производительности. По сравнению с компьютером, имеющим традиционную архитектуру и конфигурацию в виде одноядерного ЦПУ и 2500-ядерного ГПУ, разница в быстродействии составляет от 1,000 до 10,000 раз. Все эти цифры безусловно впечатляют, но есть несколько «но».

Во-первых, D-Wave 2000Q стоит чрезвычайно дорого — $15 млн. Это довольно массивное и сложное устройство. Его мозгом является КПУ из цветного металла под названием ниобий, сверхпроводниковые свойства которого (необходимые для квантовых компьютеров) возникают в вакууме при близкой к абсолютному нулю температуре ниже 15 милликельвинов (это в 180 раз ниже температуры в открытом космосе).

Поддержание такой экстремально низкой температуры требует больших затрат энергии, 25 кВт. Но все же, согласно производителю, это в 100 раз меньше, чем у эквивалентных по производительности традиционных суперкомпьютеров. Так что производительность D-Wave 2000Q на один ватт потребляемой энергии в 100 раз выше. Если компании удастся и дальше следовать своему «закону Мура», то в её будущих компьютерах эта разница будет расти в геометрической прогрессии, с сохранением энергопотребления на нынешнем уровне.

Во-первых, у квантовых компьютеров весьма специфическое назначение. В случае D-Wave 2000Q речь идет о т.н. адиабатических компьютерах и решении задач квантовой нормализации. Они, в частности, возникают в следующих областях:

Машинное обучение:

Выявление статистических аномалий
— нахождения сжатых моделей
— распознавание изображений и образов
— тренировка нейросетей
— проверка и утверждение программного обеспечения
— классификация безструктурных данных
— диагностика ошибок в схеме

Безопасность и планирование

Обнаружение вирусов и взлома сети
— распределение ресурсов и нахождение оптимальных путей
— определение принадлежности множеству
— анализ свойств графика
— факторизация целых чисел (применяется в криптографии)

Финансовое моделирование

Выявление рыночной нестабильности
— разработка торговых стратегий
— оптимизация торговых траекторий
— оптимизация ценообразования активов и хеджирования
— оптимизация портфолио

Здравоохранение и медицина

Выявление мошенничества (вероятно речь идет о медицинских страховках)
— генерирование таргетной («молекулярно-прицельной») лекарственной терапии
— оптимизация лечения [рака] методом радиотерапии
— создание моделей протеина.

Первым покупателем D-Wave 2000Q стала компания TDS (Temporal Defense Systems), занятая в области кибер-безопасности. Вообще же продукцией D-Wave пользуются такие компании и учреждения как Lockheed Martin, Google, Исследовательский центр Эймса при НАСА, Университет Южной Калифорнии и Лос-Аламосская национальная лаборатория при Министерстве энергетики США.

Таким образом, речь идет о редкой (D-Wave является единственной в мире компанией, выпускающей коммерческие образцы квантовых компьютеров) и дорогой технологии с довольно узким и специфическим применением. Но темпы роста её производительности потрясают воображение, и если эта динамика сохранится, то благодаря адиабатическим компьютерам D-Wave (к которой со временем возможно присоединятся и другие компании) в ближайшие годы нас могут ожидать настоящие прорывы в науке и технике. Особый интерес вызывает сочетание квантовых компьютеров с такой перспективной и быстро развивающейся технологией как искусственный интеллект — тем более, что в этом видит перспективу такой авторитетный специалист как Энди Рубин.

Да, кстати, вы знали, что Корпорация IBM разрешила пользователям интернета бесплатно подключаться к построенному ей универсальному квантовому компьютеру и экспериментировать с квантовыми алгоритмами. Этому устройству не хватит мощности, чтобы взламывать криптографические системы с открытым ключом, но если планы IBM осуществятся, то появление более сложных квантовых компьютеров не за горами.

Квантовый компьютер, к которому IBM открыла доступ, содержит пять кубитов: четыре служат для работы с данными, а пятый — для коррекции ошибок во время вычислений. Коррекция ошибок — главное нововведение, которым гордятся его разработчики. Она упростит увеличение количества кубитов в будущем.

В IBM подчёркивают, что её квантовый компьютер является универсальным и способен исполнять любые квантовые алгоритмы. Это отличает его от адиабатических квантовых компьютеров, которые разрабатывает компания D-Wave. Адиабатические квантовые компьютеры предназначены для поиска оптимального решения функций и не подходят для других целей.

Считается, что универсальные квантовые компьютеры позволят решать некоторые задачи, которые не под силу обычным компьютерам. Наиболее известный пример такой задачи — разложение чисел на простые множители. Обычному компьютеру, даже очень быстрому, понадобятся сотни лет, чтобы отыскать простые множители большого числа. Квантовый компьютер найдёт их при помощи алгоритма Шора почти так же быстро, как происходит умножение целых чисел.

Невозможность быстрого разложения чисел на простые множители — это основа криптографических систем с открытым ключом. Если эту операцию научатся выполнять с той скоростью, которую обещают квантовые алгоритмы, то о большей части современной криптографии придётся забыть.

На квантовом компьютере IBM можно запустить алгоритм Шора, но пока кубитов не станет больше, пользы от этого мало. В течение следующих десяти лет ситуация изменится. К 2025 году в IBM планируют построить квантовый компьютер, содержащий от пятидесяти до ста кубитов. По мнению специалистов, уже при пятидесяти кубитах квантовые компьютеры смогут решать некоторые практические задачи.

Вот еще немного интересного про компьютерные технологии: почитайте, как , а вот А еще оказывается можно и что это за

Кандидат физико-математических наук Л. ФЕДИЧКИН (Физико-технологический институт Российской академии наук.

Используя законы квантовой механики, можно создать принципиально новый тип вычислительных машин, которые позволят решать некоторые задачи, недоступные даже самым мощным современным суперкомпьютерам. Резко возрастет скорость многих сложных вычислений; сообщения, посланные по линиям квантовой связи, невозможно будет ни перехватить, ни скопировать. Сегодня уже созданы прототипы этих квантовых компьютеров будущего.

Американский математик и физик венгерского происхождения Иоганн фон Нейман (1903- 1957).

Американский физик-теоретик Ричард Филлипс Фейнман (1918-1988).

Американский математик Питер Шор, специалист в области квантовых вычислений. Предложил квантовый алгоритм быстрой факторизации больших чисел.

Квантовый бит, или кубит. Состояниям и отвечают, например, направления спина атомного ядра вверх или вниз.

Квантовый регистр - цепочка квантовых битов. Одно- или двухкубитовые квантовые вентили осуществляют логические операции над кубитами.

ВВЕДЕНИЕ, ИЛИ НЕМНОГО О ЗАЩИТЕ ИНФОРМАЦИИ

Как вы думаете, на какую программу в мире продано наибольшее количество лицензий? Не рискну настаивать, что знаю правильный ответ, но мне точно известен один неверный: это не какая-либо из версий Microsoft Windows. Самую распространенную операционную систему опережает скромный продукт фирмы RSA Data Security, Inc. - программа, реализующая алгоритм шифрования с открытым ключом RSA, названный так в честь его авторов - американских математиков Ривеста, Шамира и Адельмана.

Дело в том, что алгоритм RSA встроен в большинство продаваемых операционных систем, а также во множество других приложений, используемых в различных устройствах - от смарткарт до сотовых телефонов. В частности, имеется он и в Microsoft Windows, а значит, распространен заведомо шире этой популярной операционной системы. Чтобы обнаружить следы RSA, к примеру, в браузере Internet Explorer (программе для просмотра www-страниц в сети Интернет), достаточно открыть меню "Справка" (Help), войти в подменю "О программе" (About Internet Explorer) и просмотреть список используемых продуктов других фирм. Еще один распространенный браузер Netscape Navigator тоже использует алгоритм RSA. Вообще, трудно найти известную фирму, работающую в области высоких технологий, которая не купила бы лицензию на эту программу. На сегодняшний день фирма RSA Data Security, Inc. продала уже более 450 миллионов(!) лицензий.

Почему же алгоритм RSA оказался так важен?

Представьте, что вам необходимо быстро обменяться сообщением с человеком, находящимся далеко. Благодаря развитию Интернета такой обмен стал доступен сегодня большинству людей - надо только иметь компьютер с модемом или сетевой картой. Естественно, что, обмениваясь информацией по сети, вы бы хотели сохранить свои сообщения в тайне от посторонних. Однако полностью защитить протяженную линию связи от прослушивания невозможно. Значит, при посылке сообщений их необходимо зашифровать, а при получении - расшифровать. Но как вам и вашему собеседнику договориться о том, каким ключом вы будете пользоваться? Если послать ключ к шифру по той же линии, то подслушивающий злоумышленник легко его перехватит. Можно, конечно, передать ключ по какой-нибудь другой линии связи, например отправить его телеграммой. Но такой метод обычно неудобен и к тому же не всегда надежен: другую линию тоже могут прослушивать. Хорошо, если вы и ваш адресат заранее знали, что будете обмениваться шифровками, и потому заблаго-временно передали друг другу ключи. А как быть, например, если вы хотите послать конфиденциальное коммерческое предложение возможному деловому партнеру или купить по кредитной карточке понравившийся товар в новом Интернет-магазине?

В 1970-х годах для решения этой проблемы были предложены системы шифрования, использую щие два вида ключей для одного и того же сообщения: открытый (не требующий хранения в тайне) и закрытый (строго секретный). Открытый ключ служит для шифрования сообщения, а закрытый - для его дешифровки. Вы посылаете вашему корреспонденту открытый ключ, и он шифрует с его помощью свое послание. Все, что может сделать злоумышленник, перехвативший открытый ключ, - это зашифровать им свое письмо и направить его кому-нибудь. Но расшифровать переписку он не сумеет. Вы же, зная закрытый ключ (он изначально хранится у вас), легко прочтете адресованное вам сообщение. Для зашифровки ответных посланий вы будете пользоваться открытым ключом, присланным вашим корреспондентом (а соответствующий закрытый ключ он оставляет себе).

Как раз такая криптографическая схема и применяется в алгоритме RSA - самом распространенном методе шифрования с открытым ключом. Причем для создания пары открытого и закрытого ключей используется следующая важная гипотеза. Если имеется два больших (требующих более сотни десятичных цифр для своей записи) простых числа M и K, то найти их произведение N=MK не составит большого труда (для этого даже не обязательно иметь компьютер: достаточно аккуратный и терпеливый человек сможет перемножить такие числа с помощью ручки и бумаги). А вот решить обратную задачу, то есть, зная большое число N, разложить его на простые множители M и K (так называемая задача факторизации ) - практически невозможно! Именно с этой проблемой столкнется злоумышленник, решивший "взломать" алгоритм RSA и прочитать зашифрованную с его помощью информацию: чтобы узнать закрытый ключ, зная открытый, придется вычислить M или K.

Для проверки справедливости гипотезы о практической сложности разложения на множители больших чисел проводились и до сих пор еще проводятся специальные конкурсы. Рекордом считается разложение всего лишь 155-значного (512-битного) числа. Вычисления велись параллельно на многих компьютерах в течение семи месяцев 1999 года. Если бы эта задача выполнялась на одном современном персональном компьютере, потребовалось бы примерно 35 лет машинного времени! Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное - за 10 25 (!) лет. (Для сравнения возраст Вселенной равен ~10 10 лет.)

Поэтому криптографические алгоритмы, подобные RSA, оперирующие достаточно длинными ключами, считались абсолютно надежными и использовались во многих приложениях. И все было хорошо до тех самых пор ...пока не появились квантовые компьютеры.

Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации (и многие другие!) не составит большого труда. Согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов!

КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.

В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления - это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН 4). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман, хорошо знакомый постоянным читателям "Науки и жизни". Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных - телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема - ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П. Шор, разработав схему кодирования квантовых состояний и коррекции в них ошибок. К сожалению, тема коррекции ошибок в квантовых компьютерах так же важна, как и сложна, чтобы изложить ее в данной статье.

УСТРОЙСТВО КВАНТОВОГО КОМПЬЮТЕРА

Прежде чем рассказать, как же устроен квантовый компьютер, вспомним основные особенности квантовых систем (см. также "Наука и жизнь" № 8, 1998 г.; № 12, 2000 г.).

Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом (в житейском понимании) квантовые частицы ведут себя лишь в том случае, если мы постоянно "подглядываем" за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам "отвернуться" (прекратить наблюдение), как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично в другой, частично в третьей и т. д. Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу. Но опыт показывает, что после измерения электрон всегда оказывается "целым и невредимым" в одной единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Шредингером. Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент. После измерения положения частицы ее волновая функция как бы стягивается (коллапсирует) в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом , успешно используется в квантовых вычислениях.

Квантовый бит

Основная ячейка квантового компьютера - квантовый бит, или, сокращенно, кубит (q-бит). Это квантовая частица, имеющая два базовых состояния, которые обозначаются 0 и 1 или, как принято в квантовой механике, и. Двум значениям кубита могут соответствовать, например, основное и возбужденное состояния атома, направления вверх и вниз спина атомного ядра, направление тока в сверхпроводящем кольце, два возможных положения электрона в полупроводнике и т.п.

Квантовый регистр

Квантовый регистр устроен почти так же, как и классический. Это цепочка квантовых битов, над которыми можно проводить одно- и двухбитовые логические операции (подобно применению операций НЕ, 2И-НЕ и т.п. в классическом регистре).

К базовым состояниям квантового регистра, образованного L кубитами, относятся, так же как и в классическом, все возможные последовательности нулей и единиц длиной L. Всего может быть 2 L различных комбинаций. Их можно считать записью чисел в двоичной форме от 0 до 2 L -1 и обозначать. Однако эти базовые состояния не исчерпывают всех возможных значений квантового регистра (в отличие от классического), поскольку существуют еще и состояния суперпозиции, задаваемые комплексными амплитудами, связанными условием нормировки. Классического аналога у большинства возможных значений квантового регистра (за исключением базовых) просто не существует. Состояния классического регистра - лишь жалкая тень всего богатства состояний квантового компьютера.

Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи. Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных. Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. Отсюда сразу видно, что маленькие квантовые регистры (L<20) могут служить лишь для демонстрации отдельных узлов и принципов работы квантового компьютера, но не принесут большой практической пользы, так как не сумеют обогнать современные ЭВМ, а стоить будут заведомо дороже. В действительности квантовое ускорение обычно значительно меньше, чем приведенная грубая оценка сверху (это связано со сложностью получения большого количества амплитуд и считывания результата), поэтому практически полезный квантовый компьютер должен содержать тысячи кубитов. Но, с другой стороны, понятно, что для достижения действительного ускорения вычислений нет необходимости собирать миллионы квантовых битов. Компьютер с памятью, измеряемой всего лишь в килокубитах, будет в некоторых задачах несоизмеримо быстрее, чем классический суперкомпьютер с терабайтами памяти.

Стоит, однако, отметить, что существует класс задач, для которых квантовые алгоритмы не дают значительного ускорения по сравнению с классическими. Одним из первых это показал российский математик Ю. Ожигов, построивший ряд примеров алгоритмов, принципиально не ускоряемых на квантовом компьютере ни на один такт.

И тем не менее нет сомнения, что компьютеры, работающие по законам квантовой механики, - новый и решающий этап в эволюции вычислительных систем. Осталось только их построить.

КВАНТОВЫЕ КОМПЬЮТЕРЫ СЕГОДНЯ

Прототипы квантовых компьютеров существуют уже сегодня. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом (IBM), объявила о сборке 5-битового квантового компьютера. Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.

Существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты.

И. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул.

Российский исследователь М. В. Фейгельман, работающий в Институте теоретической физики им. Л. Д. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводни ковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце - по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем.

В Физико-технологическом институте РАН группа под руководством академика К. А. Валиева предложила два варианта размещения кубитов в полупроводниковых структурах. В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини-электродам на поверхности полупроводника. Состояния 0 и 1 - положения электрона в одной из этих ям. Переключается кубит изменением напряжения на одном из электродов. В другом варианте кубитом является ядро атома фосфора, внедренного в определенную точку полупровод ника. Состояния 0 и 1 - направления спина ядра вдоль либо против внешнего магнитного поля. Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения.

Таким образом, исследования активно ведутся и можно предположить, что в самом недалеком будущем - лет через десять - эффективный квантовый компьютер будет создан.

ВЗГЛЯД В БУДУЩЕЕ

Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием. Вероятно, первые квантовые компьютеры будут громоздкими и дорогими устройствами, не умещающимися на письменном столе и обслуживаемыми большим штатом системных программистов и наладчиков оборудования в белых халатах. Доступ к ним получат сначала лишь государственные структуры, затем богатые коммерческие организации. Но примерно так же начиналась и эра обычных компьютеров.

А что же станет с классическими компью-терами? Отомрут ли они? Вряд ли. И для классических, и для квантовых компьютеров найдутся свои сферы применения. Хотя, по всей видимости, соотношение на рынке будет все же постепенно смещаться в сторону последних.

Внедрение квантовых компьютеров не приведет к решению принципиально нерешаемых классических задач, а лишь ускорит некоторые вычисления. Кроме того, станет возможна квантовая связь - передача кубитов на расстояние, что приведет к возникновению своего рода квантового Интернета. Квантовая связь позволит обеспечить защищенное (законами квантовой механики) от подслушивания соединение всех желающих друг с другом. Ваша информация, хранимая в квантовых базах данных, будет надежнее защищена от копирования, чем сейчас. Фирмы, производящие программы для квантовых компьютеров, смогут уберечь их от любого, в том числе и незаконного, копирования.

Для более глубокого освоения этой темы можно прочитать обзорную статью Э. Риффеля, В. Полака "Основы квантовых вычислений", опубликованную в издаваемом в России журнале "Квантовые компьютеры и квантовые вычисления" (№ 1, 2000 г.). (Кстати, это первый и пока единственный в мире журнал, посвященный квантовым вычислениям. Дополнительную информацию о нем можно узнать в Интернете по адресу http://rcd.ru/qc .). Освоив эту работу, вы сможете читать научные статьи по квантовым вычислениям.

Несколько большая предварительная математическая подготовка потребуется при чтении книги А. Китаева, А. Шеня, М. Вялого "Классические и квантовые вычисления" (М.: МЦНМО-ЧеРо, 1999).

Ряд принципиальных аспектов квантовой механики, существенных для проведения квантовых вычислений, разобран в книге В. В. Белокурова, О. Д. Тимофеевской, О. А. Хрусталева "Квантовая телепортация - обыкновенное чудо" (Ижевск: РХД, 2000).

В издательстве РХД готовится к выходу в виде отдельной книги перевод обзора А. Стина, посвященный квантовым компьютерам.

Следующая литература будет полезна не только в познавательном, но и в историческом плане:

1) Ю. И. Манин. Вычислимое и невычислимое.

М.: Сов. радио, 1980.

2) И. фон Нейман. Математические основы квантовой механики.

М.: Наука, 1964.

3) Р. Фейнман. Моделирование физики на компьютерах // Квантовый компьютер и квантовые вычисления:

Сб. в 2-х т. - Ижевск: РХД, 1999. Т. 2, с. 96-123.

4) Р. Фейнман. Квантово-механические компьютеры

// Там же, с. 123.-156.

См. в номере на ту же тему

Мир на пороге очередной квантовой революции. Первый квантовый компьютер будет мгновенно решать задачи, на которые самое мощное современное устройство сейчас тратит годы. Какие это задачи? Кому выгодно, а кому угрожает массовое использование квантовых алгоритмов? Что такое суперпозиция кубитов, как люди научились находить оптимальное решение, не перебирая триллионы вариантов? Отвечаем на эти вопросы в рамках рубрики «Просто о сложном».

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями - квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки - квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Квантовый процессор на пяти кубитах от IBM

Дальше - больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер - тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности - от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников - материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы - они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин - компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо - привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты - нули и единички, - то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно - кубиты). Сам кубит - вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу - уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств - лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью - разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете - пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело - теоретически придумать кубит, и совсем другое - воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита - нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи - все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Сотрудники лаборатории искусственных квантовых систем

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер - все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера - вопрос стратегической важности.

Не пропустите лекцию:

Рекомендуем почитать

Наверх