Современный информационный носитель. Виды носителей информации

Windows 10 19.02.2024
Windows 10

Носитель информации (data medium ) - материальный объект или среда, предназначенный для хранения данных. В последнее время носителями информации называют преимущественно устройства для хранения файлов данных в компьютерных системах, отличая их от устройств для ввода-вывода информации и устройств для обработки информации.

Классификация носителей информации

Цифровые носители информации - компакт-диски, дискета, карты памяти

Аналоговые носители информации - магнитофонная и бабинна кассеты

По форме сигнала , используемый для записи данных, различают аналоговые и цифровые носители. Для перезаписи информации с аналогового носителя на цифровой или наоборот необходимо сигнала.

По назначению различают носители

  • Для использования на различных устройствах
  • Вмонтированы в определенное устройство

По устойчивости записи и возможностью перезаписи:

  • Постоянные запоминающие устройства (ПЗУ), содержание которых не может быть изменен конечным пользователем (например, CD-ROM, DVD-ROM). ПЗУ в рабочем режиме допускает только считывание информации.
  • Записываемые устройства, в которые конечный пользователь может записать информацию только один раз (например, CD-R, DVD-R,DVD + R, BD-R).
  • Перезаписываемые устройства (например, CD-RW, DVD-RW, DVD + RW, BD-RE, магнитная лента и т.п.).
  • Оперативные устройства обеспечивают режим записи, хранения и считывания информации в процессе ее обработки. Быстрые, но дорогие ОЗУ (SRAM, статические ОЗУ) строятся на основе триггеров, медленные, но дешевые разновидности (DRAM, динамические ОЗУ) строятся на основе конденсатора. В обоих видах оперативной памяти информация исчезает после отключения от источника тока. Динамические ОЗУ требуют периодического обновления содержимого - регенерации.

По физическому принципу

  • перфорационные (с отверстиями или вырезами) - перфокарта, перфолента
  • магнитные - магнитная лента, магнитные диски
  • оптические - оптические диски CD, DVD, Blu-ray Disc
  • магнитооптические - магнитооптический компакт-диск (CD-MO)
  • электронные (используют эффекты полупроводников) - карты памяти, флэш-память

По конструктивным (геометрическими) особенностями

  • Дисковые (магнитные диски, оптические диски, магнитооптические диски)
  • Ленточные (магнитные ленты, перфоленты)
  • Барабанные (магнитные барабаны)
  • Карточные (банковские карты, перфокарты, флеш-карты, смарт-карты)

Иногда носителями информации также называют объекты, чтение информации из которых не требуют специальных устройств - например бумажные носители .

Емкость носителя информации

Емкость цифрового носителя означает количество информации, которую на него можно записать, ее измеряют в специальных единицах - байтах, а также в их производных -килобайтах, мегабайтах и т.д., или же в кибибайтах, мебибайтах подобное. Например, емкость распространенных CD -носителей составляет 650 или 700 МБ, DVD-5 - 4,37 ГБ, двухслойных DVD 8,7 гб, современных жестких дисков - до 10 Тб (на 2009 год).

Введение…………………………………………………………………………...3

Носители информации……………………………………………………………4

Кодирование и считывание информации..………………………………………9

Перспективы развития…………………….…………………………………….15

Заключение……………………………………………………………………….18

Литература.………………………………………………………………………19

Введение

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Кодирование информации – это процесс формирования определенного представления информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией.

В ходе реферата рассмотрим основные типы носителей информации, кодирования и считывания информации, а также перспективы развития.

Носители информации

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

Рассмотрим более подробно современные носители информации.

1. Накопитель на гибких магнитных дисках (НГМД – дисковод).

Это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод – устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее време дискеты практически не используются.

2. Накопитель на жестком магнитном диске (НЖМД – винчестер)

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

– большая емкость;

– простота и надежность использования;

– возможность обращаться к множеству файлов одновременно;

– высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

3. Устройство чтения компакт-дисков (CD-ROM)

В этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно, и большой емкости при минимальных размерах. Компакт-диск является отличным средством хранения информации, он дешевый, практически не подвержен каким-либо влияниям среды, информация, записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, его ёмкость 650 Мбайт. Имеет только один недостаток – сравнительно небольшой объём хранения информации.

4. DVD

А) Отличия DVD от обычных CD-ROM

Самое основное отличие – это, естественно, объем записываемой информации. Если на обычный CD-диск можно записать 650 Мб (хотя в последнее время встречаются болванки и на 800 Мб, но далеко не все приводы смогут прочитать то, что записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб. В DVD используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. В самих носителях тоже отличий больше, чем кажется на первый взгляд. Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою – для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой. Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.

Б) Емкость DVD

Существует пять разновидностей DVD-дисков:

1. DVD5 – однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 – двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 – однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 – двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 – двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Самые популярные стандарты – DVD5 и DVD9.

В) Возможности

Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта, и игры, и фильмы. Естественно, что основной областью использования является кинопродукция.

Г) Звук в DVD

Звуковое сопровождение может быть закодировано во многих форматах. Самые известные и часто используемые – Dolby Prologic, DTS и Dolby Digital всех версий. То есть фактически в форматах, используемых в кинотеатрах для получения максимально точной и красочной звуковой картины.

Д) Механические повреждения

К механическим повреждениям диски CD и DVD одинаково чувствительны. То есть царапина есть царапина. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными. Сейчас существуют программы, которые могут восстанавливать информацию даже с поврежденных дисков, правда с пропуском повреждённых секторов.

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии.

6. USB Flash Drive

Новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB(универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Кодирование и считывание информации

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

А) Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Необходимо помнить, что в настоящее

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 б В - - Т

время для кодировки русских букв используют пять различных кодовых

таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы, не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы. Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы – конверторы, которые встроены в приложения.

Б) Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. Без компьютерной графики трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах – в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

В) Кодирование звуковой информации

С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся. Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток – старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи. В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука. На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. Рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) – устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. Считывание информации характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков наносек до нескольких милисек.

Рассмотрим процесс считывания информации на примере компакт-диска. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Длина пита изменяет как амплитуду, так и длительность регистрируемого сигнала.

Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Перспективы развития

Развитие носителей записи информации идет в 3 основных направлениях:

а) увеличение объема полезной информации на конкретном носителе (особенно актуально для оптических дисков);

б) улучшение качества технического оборудования (время доступа к информации, скорость передачи данных);

в) постепенное повышение уровня сочетаемости различных форматов используемых носителей.

К перспективным видам носителей памяти относятся: Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc), Millipede.

Eye-Fi - разновидность SD флеш-карт памяти со встроенными внутри карты аппаратными элементами поддержки Wi-Fi-технологии.

Карты могут быть использованы в любом цифровом фотоаппарате. Карта вставляется в соответствующее гнездо фотоаппарата, получая питание от фотоаппарата и при этом расширяя его функционал. Фотоаппарат, оснащённый такой картой может передавать отснятые фотоснимки или видеоролики на компьютер, в мировую сеть интернет на заранее запрограммированные ресурсы, которые осуществляют фото или видео хостинг подобного рода контента. Администрирование, доступ к настройкам и управление работой таких карт осуществляется по Wi-Fi с PC или Mac совместимого компьютера через браузер. Карта работает только через заранее прописанные Wi-Fi сети, поддерживаются шифрование WEP и WPA2.

Технические характеристики:

Емкость карты: 2, 4 или 8 Гигабайта

Поддерживаемые стандарты Wi-Fi: 802.11b, 802.11g

Безопасность Wi-Fi: cтатический WEP 64/128, WPA-PSK, WPA2-PSK

Размеры карты: SD стандарт - 32 х 24 х 2.1 мм

Вес карты: 2.835 г

Голографический многоцелевой диск (Holographic Versatile Disc) - разрабатываемая перспективная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению сBlu-Ray и HD DVD. Она использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные. Предполагаемая информационная ёмкость этих дисков - до 3.9 терабайт (TB), что сравнимо с 6000 CD, 830 DVD или 160 однослойными дисками Blu-ray; скорость передачи данных - 1 Гбит/сек. Optware собирался выпустить 200GB диск в начале июня 2006 года и Maxell в сентябре 2006 с ёмкостью 300GB. 28 июня 2007 года HVD стандарт был утверждён и опубликован.

Структура голографического диска (HVD)

1. Зелёный лазер чтения/записи (532nm)

2. Красный позиционирующий/индексный лазер (650nm)

3. Голограмма (данные)

4. Поликарбонатный слой

5. Фотополимерный (рhotopolimeric) слой (слой содержащий данные)

6. Разделяющий слой (Distans layers)

7. Слой отражающий зелёный цвет (Dichroic layer)

8. Алюминиевый отражающий слой (отражающий красный свет)

9. Прозрачная основа

P. Углубления

Millipede – относительно новая технология запоминающих устройств, разрабатываемая компанией IBM. Для считывания и записи информации используется зонд сканирующего зондового микроскопа. Также вопросами Millipede memory (Милипидовой памяти) занимаются учёные из Университета науки и технологий в Поханге (Южная Корея). Они смогли первыми в мире создать материал, подходящий для создания миллипидовой памяти. Особенность миллипидовой памяти заключается в том, что информация сохраняется в огромном количестве наноямок, покрывающем поверхность рабочего материала. При этом подобная память является энергонезависимой, и данные сохраняются в ней сколь угодно долго. Для создания действующего прототипа миллипидовой памяти корейские электронщики разработали уникальный полимерный материал. Только с его помощью удалось создать стабильно функционирующее запоминающее устройство, которое уже практически готово к внедрению в производство.

Заключение

В ходе реферата были рассмотрены основные виды носителей информации, принципы кодирования и считывания информации, а также перспективы развития носителей информации.

Также были рассмотрены история носителей информации (перфоленты, перфокарты, магнитные ленты, сменные и постоянные магнитные диски, магнитные барабаны, пакеты сменных магнитных дисков); накопители на гибких магнитных дисках, накопители на жестких магнитных дисках, CD-диски, DVD-диски, портативные USB-накопители, USB Flash Drive. Были рассмотрены кодирование (текстовое, графическое, звуковое) и считывание информации (на примере считывание информации с CD-диска). Самыми перспективными на сегодняшний день считаются Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc) и Millipede.

Допечатные процессы предъявляют особые требования к регистрирующим средствам, использующимся для хранения информации. Такие требования являются следствием не только постоянных потребностей, связанных с увеличением объемов сохраняемых данных, обрабатываемых в процессе производства печатной продукции. Память имеет исключительное значение для постоянного резервирования данных внутри сети рабочих станций, а также для безопасной пересылки и архивирования данных. Несмотря на возросшие возможности передачи данных через сети или через Интернет, среды для сохранения данных будут продолжать играть важную роль в обмене информацией между заказчиком и исполнителем.

Благодаря новым технологиям и производственным процессам емкость носителей, предназначенных для хранения информации, постоянно увеличивается. Имеются предпосылки, что этот рост составит около 80% в год. Суть увеличения объемов хранения данных включает, вероятно, совокупность следующих факторов: повышение плотности записи, числа дорожек и оптимальное использование поверхности носителя. Супердиск с объемом памяти 120 Мб действительно соответствует данной задаче, несмотря на то, что по внешнему виду он является почти таким же, как гибкий 3,5-дюймовый диск. Однако супердиск по объему памяти превосходит последний почти в 83 раза. Сведения об объемах памяти различных носителей приведены в табл. 5.

Классификация носителей данных

Все имеющиеся в настоящее время носители информации могут подразделяться по различным признакам. В первую очередь, следует различать энергозависимые и энергонезависимые накопители информации.

Энергонезависимые накопители, используемые для архивирования и сохранения массивов данных, подразделяют:

Если требуется быстрый доступ к информации, как, например, при выводе или передаче данных, то используются носители с вращающимся диском. Для архивирования, выполняемого периодически (Backup), наоборот, более предпочтительными являются ленточные носители. Они имеют большие объемы памяти в сочетании с невысокой ценой, правда, при относительно невысоком быстродействии.

По назначению носители информации различаются на три группы:

  • распространение информации: носители с предварительно записанной информацией, такие как CD ROM или DVD-ROM;
  • архивирование: носители для одноразовой записи информации, такие как CD-R или DVD-R (R (record able) – для записи);
  • резервирование (Backup) или передача данных: носители с возможностью многоразовой записи информации, такие как дискеты, жесткий диск, MO, CD-RW (RW (rewritable) – перезаписываемые и ленты.
CD и DVD (ROM, R, RW)

CD-ROM был первоначально создан для того, чтобы распространять большие объемы информации (например, музыку и т.д.) за умеренную плату. Между тем он стал наиболее используемым носителем информации и для меньших объемов данных, например, при личном пользовании. В обозримом будущем CD-ROM могут быть заменены на DVD-ROM. DVD имеет емкость памяти от 4,7 до 17 GB. DVD-ROM может использоваться для распространения программных продуктов, мультимедиа, банков данных и для записи художественных фильмов. Увеличение объема памяти здесь стало возможным благодаря технологии двойного слоя. Она позволяет наносить на верхнюю и нижнюю стороны диска по два накопительных слоя, которые разделяются полуотражающим промежуточным слоем. При считывании информации лазер "прыгает" между обоими накопительными слоями.

Компакт-диск, кратко называемый CD-R (или, соответственно, DVD-R), представляет собой оптическую пластину для одноразовой записи в формате 5,25 дюйма с большой плотностью. Запись на такой диск может быть произведена только один раз в специальном записывающем устройстве. После этого информацию можно считывать посредством обычного дисковода CD-ROM. Типичная область применения – это передача информации в ограниченном количестве.

Более гибким, но менее распространенным является CD-RW (Rewritable). Этот сменный носитель информации может быть перезаписан заново до 1000 раз. Нанесенный слой при записи в результате термооптического процесса изменяет свою структуру с кристаллической на аморфную. В результате на этих местах изменяются отражающие свойства несущего слоя. Интенсивность излучения, соответствующая отражению от светлых или темных участков, преобразуется в бинарные числа 1 или 0.

Сменные накопители

Работа сменного накопителя основывается на использовании магнитных слоев, служащих для многократной записи информации.

Сменные диски SyQuest.

Производитель SyQuest, начав с выпуска дисков емкостью 44 Мб, довел со временем их память до 1,5 Гб. При этом увеличение памяти потребовало применения и нового дисковода. Эти сменные магнитные диски стали часто используемыми носителями данных в допечатных процессах. Картриджи данных. Начиная с 70-х годов эти магнитные накопители относятся к основным средам для резервирования данных. Главным образом они используются для резервного копирования данных на жестком диске персональных компьютеров (PC). Часто при резервировании в сети система автоматически подключает несколько картриджей для обработки накопителей со сменными дисками. Картриджи выпускаются в форматах 5,25 и 3,5 дюйма. Дисководы, предлагаемые различными изготовителями, бывают встроенными или присоединенными к персональному компьютеру. По сравнению с гибкими дисками скорость пересылки данных у картриджей выше, однако она меньше, чем у жестких дисков. Магнитный ленточный носитель данных (ширина ленты 4 или 8 мм). Среди множества четырех- и восьмимиллиметровых ленточных носителей информации имеются такие, которые в соответствии с новыми разработками отличаются более надежной защитой данных. Это свойство достигнуто благодаря тому, что уменьшено воздействие на подобные ленты статического электричества. Четырехмиллиметровые ленточные носители информации имеют емкость до 4 Гб. У восьмимиллиметровых носителей – 5 Гб. Они используются в банках данных, когда на магнитных лентах должны автоматически сохраняться большие массивы информации.



SuperDisk, ZIP, JAZ. Гибкий диск 3,5 дюйма является наиболее распространенным накопительным носителем в мире. В настоящее время в разработке находятся две системы: технология ZIP фирмы Iomega и SuperDisk (ранее называвшийся LS-120) фирмы Imation.

SuperDisk предоставляет возможность размещения информации объемом 120 Мб и почти не отличается внешне от традиционной 3,5-дюймовой дискеты. Носитель информации недорогой и "совместим в обе стороны", т.е. на новых дисководах можно также считывать и записывать классические дискеты 1,44 Мб.

Дискеты ZIP фирмы Iomega имеют объем от 100 до 250 Мб и по цене сопоставимы с носителем SuperDisk. Дискеты ZIP в настоящее время очень распространены в издательском деле, из чего можно сделать заключение о соответствующей потребности в сменных носителях такого вида. ZIP не "совместим в обе стороны", а дисковод может обрабатывать только носители ZIP. Время доступа к информации у диска ZIP меньше, чем у диска SuperDisk.

Дискеты 3,5 дюйма "JAZ" фирмы Iomega имеют объем хранения информации до 2 Гб. Магнитооптический диск (CD-MO). Магнитооптические носители, кратко называемые MO, получили широкое распространение. В пользу этой технологии однозначно говорит объем памяти: 640 Мб на носителе 3,5 дюйма и 2,6 Гб на носителе 5,25 дюйма. Их развитие идет быстро. Уже сегодня такие изготовители, как Sony и Philips, говорят об объеме 2,6 Гб у носителей 3,5 дюйма и 10,4 Гб у носителей 5,25 дюймо вого формата. Дисководы MO достигают скорости передачи данных 4 Мб/с, а среднее время доступа составляет менее 25 мс. Размещение и запись данных осуществляются посредством лазера.



Жесткие диски. Наконец следует упомянуть жесткие диски, которые входят в стандартную комплектацию практически каждого компьютера. Объем памяти этих носителей информации постоянно увеличивается и в последнее время достиг около 80 Гб для 31/2’’ диска.

Наша цивилизация немыслима в её сегодняшнем состоянии без носителей информации. Наша память ненадёжна, поэтому достаточно давно человечество придумало записывать мысли во всех видах.

Носитель информации - это любое устройство предназначенное для записи и хранения информации.

Примерами носителей могут быть и бумага, или USB-Flash память, также как и глиняная табличка или человеческая ДНК.

Информация тоже бывает разная - это и текст и звук и видео. История носителей информации начинается довольно давно...

Камни и стены пещер - палеолит (до 40 до 10 тыс. лет до нашей эры)

Первыми носителями информации были, по всей видимости, стены пещер. Наскальные изображения и петроглифы (от греч. petros - камень и glyphe - резьба) изображали животных, охоту и бытовые сцены. На самом деле точно неизвестно, предназначались ли наскальные рисунки для передачи информации, служили простым украшением, совмещали эти функции или вообще нужны были для чего то ещё. Тем не менее это самые старые носители информации, известные сейчас.

Глиняные таблички - 7-й век до нашей эры

На глиняных табличках писали пока глина была сырой, а затем обжигали в печи.


Именно глиняные таблички составили основы первых в истории библиотек, наиболее известной из которых является библиотека Ашшурбанипала в Ниневии (7 век), которая насчитывала около 30 тысяч клинописных табличек.

Восковые таблички

Восковые таблички - это деревянные таблички, внутренняя сторона которых покрывалась цветным воском для нанесения надписей острым предметом (стилосом). Использовались в древнем Риме.

Папирус - 3000 лет до нашей эры

Папирус - писчий материал получивший распространение в Египте и во всем Средиземноморье, для изготовления которого использовалось растение семейства осоковых.


Писали на нем при помощи специального пера.

Пергамент - 2 век до нашей веры

Пергамент постепенно вытеснял папирус. Название материала происходит от города Пергам, где стали впервые изготавливать этот материал. Пергамент представляет собой недубленую выделанную кожу животных - овечью, телячью или козью.


Популярности пергамента способствовало то, что на нём (в отличие от папируса) есть возможность смыть текст, написанный растворимыми в воде чернилами (см. палимпсест) и нанести новый. Кроме того, на пергаменте можно писать с обоих сторон листа

Бумага - 1-й или начало 2 века нашей эры

Предполагается что бумага была изобретена в Китае в конце первого или начале второго века нашей эры.

Широкое распространение получила благодаря арабам только в 8-9 веках.


Береста - широкое распространение с 12 века

Берестяные грамоты использовались в Новогороде и были открыты учеными в 1951 году.


Тексты берестяных писем выдавливались с помощью специального инструмента — стилоса, изготовленного из железа, бронзы или кости.

Перфокарты - появились в 1804 году, запатентованы в 1884 году

Появление перфокарт в основном связывается с именем Германа Холлерита, который применил их для проведения переписи населения в США в 1890 году. Тем не менее первые перфокарты были созданы и использованы существенно раньше. Жозеф Мари Жаккард использовал их для того чтобы задавать рисунок ткани для своего ткацкого станка ещё в 1804 году.


Перфоленты - 1846 год

Перфолента впервые появилась в 1846 году и использовалась для того, чтобы посылать телеграммы


Магнитная лента - 50-е годы

В 1952 году магнитная лента была использована для хранения, записи и считывания информации в компьютере IBM System 701.


Далее магнитная лента получила огромное признание и распространённость в форме компакт-кассет.



Магнитные диски - 50-е годы

Магнитный диск был изобретен в компании IBM в начале 50-х годов.


Гибкий диск - 1969 год

Первый, так называемый, гибкий диск был впервые представлен в 1969 году.



Жесткий диск - настоящее время

Вот мы и добрались до современности.

Жесткий диск изобретен в 1956 году, но продолжает использоваться и постоянно совершенствоваться.

Compact Disk , DVD - настоящее время




На самом деле CD И DVD это очень близкие технологии, отличающиеся не столько типом носителя, сколько технологией записи

Flash - настоящее время




Естественно здесь перечислены далеко не все придуманные и использованные человечеством носители информации. Часть видов носителей опущена специально (CD-R, Blue Ray, магнитные барабаны, лампы), а часть конечно просто забыта. Во всех ошибках или неправильных описаниях, виноват конечно же я,был бы благодарен за любые дополнения и уточнения.

Благодарности

При подготовке текста были использованы источники.

Посмотрело: 13446

0

Накопление знаний - основа основ любой цивилизации. Но человеческая память несовершенна и неспособна вместить все знания и опыт, которые переходят из поколения в поколение. Поэтому с древнейших времен люди использовали самые разнообразные носители информации, от камня и шкур животных до высококачественной бумаги. При этом, несмотря на совершенствование типов носителей, сам принцип записи и структура данных за несколько тысячелетий практически не изменились.

Качественный скачок произошел только тогда, когда человеку потребовалось научить машину понимать записанную информацию.

Более двухсот лет назад, в 1808 году, французский изобретатель Жозеф Мари Жаккар создал станок для производства тканей со сложным узором. Уникальность этого устройства заключалась в том, что была фактически спроектирована и построена первая программно управляемая машина. Последовательность действий станка при создании какого-либо узора записывалась на специальных картонных перфокартах в виде пробитых в определенном порядке дырочек.

Вряд ли Жаккар представлял, насколько блестящее будущее уготовано его изобретению. Не станку, а принципу записи информации в виде двоичного кода, который стал основой азбуки всех компьютеров.

Позже идеи Жаккара использовались в автоматических телеграфах, где последовательность сигналов азбуки Морзе записывалась на перфолентах, в аналитической машине Чарльза Беббиджа, ставшей прообразом современных компьютеров, в статистическом табуляторе Германа Холлерита и, конечно, в первых ЭВМ двадцатого века. Благодаря своей простоте различные варианты перфокарт и перфолент получили широчайшее распространение в компьютерной технике и программно управляемых станках. Подобные носители информации использовались вплоть до середины 80-х, когда их окончательно вытеснили магнитные носители.

Перфокарты и перфоленты

Годы жизни: 1808–1988

Объем памяти: до 100 Кб

Простота изготовления, возможность использования в самых низкотехнологичных устройствах

– Малая плотность записи, низкая скорость чтения/записи, невысокая надежность, невозможность перезаписи информации



ПРИРОДНЫЙ МАГНЕТИЗМ

Перфокарты и перфоленты, при всех своих преимуществах и богатой истории, обладали двумя фатальными недостатками. Первый - очень низкая информационная емкость. На стандартной перфокарте помещалось всего 80 символов или около 100 байт, для хранения одного мегабайта информации понадобилось бы больше десяти тысяч перфокарт. Второй - низкая скорость считывания: устройство ввода могло проглатывать максимум 1000 перфокарт в минуту, то есть всего 1,6 килобайта в секунду. Третий - невозможность перезаписи. Одна лишня дырка - и носитель информации приходит в негодность, как и вся находящаяся на нем информация.

В середине XX века был предложен новый принцип хранения информации, основанный на явлении остаточного намагничивания некоторых материалов. Вкратце принцип действия следующий: поверхность носителя изготавливается из ферромагнетика, после воздействия на который магнитным полем на материале сохраняется остаточная намагниченность вещества. Ее-то впоследствии и регистрируют считывающие устройства.

Первыми ласточками данной технологии стали магнитные карты, по размерам и функциям совпадавшие с обычными перфокартами. Впрочем, широкого распространения они не получили и были вскоре вытеснены более вместительными и надежными накопителями на магнитных лентах.

Эти запоминающие устройства активно использовались в мейнфреймах с 50-х годов. Изначально они представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации. Несмотря на более чем солидный возраст, технология не умерла и используется по сей день в виде стримеров. Это запоминающие устройства, выполненные в виде компактного картриджа с магнитной лентой, предназначенные для резервного копирования информации. Залог их успеха - большая вместимость, до 4 Тб! Но для любых других задач они практически непригодны из-за крайне низкой скорости доступа к данным. Причина в том, что вся информация записывается на магнитную ленту, следовательно, чтобы получить доступ к какому-либо файлу, необходимо перемотать пленку до нужного участка.

Принципиально иной подход к записи данных используется в дискетах. Это портативное запоминающее устройство, представляющий собой диск, покрытый ферромагнитным слоем и заключенный в пластиковый картридж. Дискеты появились как ответ на потребность пользователей в карманных носителях информации. Впрочем, слово «карманный» для ранних образцов не совсем подходит. Существует несколько форматов дискет в зависимости от диаметра магнитного диска внутри. Первые дискеты, появившиеся в 1971 году, были 8-дюймовыми, то есть с диаметром диска в 203 мм. Так что положить их можно было разве что в папку для бумаг. Объем записываемой информации составлял целых 80 килобайт. Впрочем, уже через два года этот показатель увеличился до 256 килобайт, а к 1975-му - до 1000 Кб! Пришло время сменить формат, и в 1976 году появились 5-тидюймовые (133 мм) дискеты. Их объем изначально составлял всего 110 Кб. Но технологии совершенствовались, и уже в 1984 году появились дискеты «высокой плотности записи» объемом 1,2 Мб. Это была «лебединая песня» формата. В том же 1984 году появились 3,5-дюймовые дискеты, которые уже можно по праву назвать карманными. По легенде, размер в 3,5 дюйма (88 мм) был выбран по принципу помещаемости дискеты в нагрудный карман рубашки. Объем этого носителя изначально составлял 720 Кб, но быстро подрос до классического 1,44 Мб. Позже, в 1991 году, появились 3,5-дюймовые дискеты Extended Density расширенной плотности, вмещавшие 2,88 Мб. Но они широкого распространения не получили, т. к. для работы с ними требовался специальный привод.

Дальнейшим развитием данной технологии стал знаменитый (кое-где печально знаменитый) Zip. В 1994 году компания Iomega выпустила на рынок накопитель рекордной по тем временам емкости - 100 Мб. Принцип действия Iomega Zip тот же, что и у обычных дискет, но благодаря высокой плотности записи производителю удалось добиться и рекордной емкости запоминающего устройства. Впрочем, Zip’ы оказались довольно ненадежными и дорогими, поэтому не смогли занять нишу трехдюймовых дискет, а впоследствии и вовсе были вытеснены более совершенными запоминающими устройствами.

Дискеты

Годы жизни: 1971- по сей день

Объем памяти: до 2,88 Мб

Компактный размер, низкая стоимость

– Небольшая надежность, уязвимый корпус, невысокая плотность записи

Магнитная лента

Годы жизни: 1952 - по сей день

Объем памяти: до 4 Тб

Возможность перезаписи, широкий диапазон рабочих температур (от -30 до +80 градусов), низкая стоимость носителей

– Невысокая плотность записи, невозможность мгновенного доступа к нужной ячейке памяти, невысокая надежность


Накопители на магнитных лентах представляли собой огромные шкафы с лентопротяжным механизмом и катушками с лентой, на которую и производилась запись информации.

ЖЕСТКИЕ ПРАВИЛА

Жесткий диск, Hard Disk Drive, является основным запоминающим устройством практически во всех современных компьютерах.

В целом принцип действия как существующих, так и разрабатываемых жестких дисков основан на явлении остаточного намагничивания материалов. Но здесь есть свои нюансы. Непосредственным носителем информации в жестком диске является блок из одной или нескольких круглых пластин, покрытых ферромагнетиком. Считывающая головка, двигаясь над поверхностью вращающихся с высокой скоростью дисков, производит запись информации путем намагничивания миллиардов крошечных областей (доменов) или считывание данных за счет регистрации остаточного магнитного поля.

Наименьшей ячейкой информации в данном случае является один домен, который может быть либо логическим нулем, либо единицей. Таким образом, чем меньше размеры одного домена, тем больше данных можно впихнуть на один жесткий диск.

Первый HDD появился в 1956 году. Устройство состояло из 50 дисков диаметром 600 мм каждый, вращавшихся со скоростью 1200 об/мин. Размеры этого HDD были сравнимы с современным двухкамерным холодильником, а емкость составляла целых 5 Мб.

С тех пор плотность записи на жестких дисках увеличилась более чем в 60 млн раз. На протяжении последнего десятилетия компании-производители стабильно удваивали емкость дисков каждый год, но сейчас этот процесс приостановился: достигнута максимально возможная плотность записи для ныне использующихся материалов и, главное, технологий.

Наиболее распространена сейчас так называемая параллельная запись. Смысл ее в том, что ферромагнетик, на который осуществляется перенос данных, состоит из множества атомов. Некоторое количество таких атомов вместе составляет домен - минимальную ячейку информации. Уменьшение размеров домена возможно только до определенного предела, так как атомы ферромагнетика взаимодействуют друг с другом и в месте стыка логического нуля и единицы (областей с противоположно направленными магнитными моментами) могут потерять стабильность. Поэтому требуется определенная буферная зона, обеспечивающая надежность хранения информации.


При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. При перпендикулярной записи магнитные частицы располагаются перпендикулярно поверхности диска.

При параллельной записи магнитные частицы размещены таким образом, что вектор магнитной направленности располагается параллельно плоскости диска. С точки зрения технологии это самое простое решение. В то же время при такой записи сила взаимодействия между доменами наиболее высока, поэтому нужна большая буферная зона, и, следовательно, больший размер самих доменов. Так что максимальная плотность при параллельной записи составляет около 23 Гбит/см2, и эта высота уже практически взята.

Дальнейшее увеличение емкости жестких дисков возможно за счет увеличения количества рабочих пластин в устройстве, но этот способ является тупиковым. Размеры современных HDD стандартизованы, да и количество используемых в них дисков ограничено по конструктивным требованиям.

Есть и другой путь - использование нового типа записи. С 2005 года в продаже можно найти жесткие диски, использующие метод перпендикулярной записи. При такой записи магнитные частицы располагаются перпендикулярно поверхности диска. Благодаря этому домены слабо взаимодействуют друг с другом, так как их векторы намагниченности располагаются в параллельных плоскостях. Это позволяет серьезно увеличить плотность информации - практический потолок оценивается в 60-75 Гбит/см2, т. е. в 3 раза больше, чем для параллельной записи.

Но самой перспективной считается технология HAMR. Это так называемый метод тепловой магнитной записи. По сути HAMR - дальнейшее развитие технологии перпендикулярной записи, с той лишь разницей, что в момент записи нужный домен подвергается кратковременному (около пикосекунды) точечному нагреву лазерным лучом. Благодаря этому головка может намагничивать очень мелкие участки диска. В открытой продаже HAMR-HDD пока нет, но опытные образцы демонстрируют рекордную плотность записи - 150 Гбит/см2. В дальнейшем, по мнению представителей компании Seagate Technology, плотность удастся увеличить до 7,75 Тбит/см2, что почти в 350 раз выше предельной плотности для параллельной записи.

HDD c параллельной записью

Годы жизни: 1956 - по сей день

Объем памяти: до 2 Тб на данный момент

Возможность мгновенного перехода к нужной ячейке информации, хорошее сочетание цена/качество

– Недостаточная на сегодняшний день плотность записи, морально устаревшая технология

HDD c перпендикулярной записью

Годы жизни: 2005 - недалекое будущее

Объем памяти: до 2,5 Тб на данный момент

Высокая плотность записи

– Более сложная технология изготовления, высокая цена, невысокая надежность новых емких моделей

HAMR-HDD

Годы жизни: 2010 - недалекое будущее

Объем памяти: время покажет

Еще более высокая плотность записи

– Особенно сложная технология изготовления и соответствующая ей высокая цена

ОПТИКА НА МАРШЕ

Несмотря на постоянное увеличение емкости стационарных жестких дисков, существует потребность в компактном и мобильном носителе информации. На сегодняшний день в этой области лидируют CD и DVD. Фактически любую информацию - музыку, софт, фильмы, энциклопедии или клипарты - можно купить на этих носителях.

Первый представитель этой технологии - LD (Laser Disc), разработанный еще в 1969 году. Эти диски предназначались прежде всего для домашних кинотеатров, но, несмотря на ряд преимуществ перед видеокассетами VHS и Betamax, широкого распространения они не получили. Следующий представитель оптических носителей оказался куда более удачным. Это был всем известный компакт-диск (CD, Compact Disc). Он был разработан в 1979 году и первоначально предназначался для записи высококачественной музыки. Но в 1987 году стараниями Microsoft и Apple компакт-диски стали использоваться и в персональных компьютерах. Так пользователи получили в свое распоряжение компактный и надежный носитель информации высокой емкости: стандартный объем в 650 Мб для конца 80-х казался неисчерпаемым.

За последние 20 лет CD практически не изменился. Носитель представляет собой своеобразный «бутерброд», состоящий из трех слоев. Основа компакт-диска - поликарбонатная подложка, на которую распыляется тончайший слой металла (алюминий, серебро, золото). На этот слой, собственно, и производится запись. Металлическое напыление покрывается слоем защитного лака, и уже на него наносятся всякие картинки, логотипы, названия и другие опознавательные знаки.

Принцип работы оптических дисков основан на изменении интенсивности отраженного света. На обычном CD вся информация записана на одной спиральной дорожке, представляющей собой последовательность углублений, питов (от англ. pit - «впадина»). Между углублениями расположены участки с гладким отражающим слоем, лэндов (от англ. land - «земля, поверхность»). Данные считываются при помощи лазерного луча, сфокусированного в световое пятно диаметром около 1,2 мкм. Если лазер попадает на лэнд, специальный фотодиод регистрирует отраженный луч и фиксирует логическую единицу. Если же лазер попадает в пит, луч рассеивается, интенсивность отраженного света уменьшается и устройство фиксирует логический ноль.

Первые лазерные диски были предназначены только для чтения. Они изготавливались строго в заводских условиях и питы на них наносились при помощи штамповки непосредственно на голую поликарбонатную подложку, после чего диски покрывали отражающим слоем и защитным лаком.

Но уже в 1988-м появилась технология CD-R (Compact Disc-Recordable). Диски, выполненные по этой технологии, можно было использовать для однократной записи информации при помощи специального пишущего привода. Для этого между поликарбонатом и отражающим слоем был размещен еще один слой из тонкого органического красителя. При нагревании до определенной температуры краситель разрушался и темнел. В процессе записи привод, управляя мощностью лазера, наносил на диск последовательность темных точек, которые при считывании воспринимались как питы.

Еще через десять лет, в 1997 году, был создан CD-RW (Compact Disc-Rewritable) - перезаписываемый компакт-диск. В отличие от CD-R, здесь в качестве записывающего слоя использовался специальный сплав, способный под воздействием лазерного луча переходить из кристаллического состояния в аморфное и обратно.

LD

Годы жизни: 1972–2000

Объем памяти: 680 Мб

Первый коммерческий образец оптических носителей данных

– Использовался только в качестве носителя видео и аудио и по размерам не уступал виниловым дискам, что создавало определенные неудобства

CD

Годы жизни: 1982 - по сей день

Объем памяти: 700 Мб

Компактность, относительная надежность, дешевизна

– Низкая, по современным меркам, емкость, морально устаревшая технология

БОЛВАНКИ НОВОГО ПОКОЛЕНИЯ

В середине 90-х, когда эпоха CD была в самом разгаре, прозорливые производители уже работали над усовершенствованием оптических дисков. В 1996 году в продаже появились первые DVD (Digital Versatile Disc) емкостью 4,7 Гб. Новые носители информации эксплуатировали тот же самый принцип, что и CD, только для считывания использовался лазер с меньшей длиной волны - 650 нм против 780 нм у компакт-дисков. Это, казалось бы, нехитрое изменение позволило уменьшить размер светового пятна, а, следовательно, и минимальный размер ячейки информации. Поэтому DVD-диск смог вместить в 6,5 раз больше полезной информации, чем CD.

В 1997 году в продажу поступили и первые записываемые DVD-R, тоже эксплуатирующие технологию, проверенную на CD-R. Впрочем, до широких масс эти новшества дошли только через несколько лет, поскольку первый пишущий привод для DVD-R стоил порядка $17 000, а болванки - по $50 за штуку.

Сегодня DVD стал неотъемлемой частью компьютерной индустрии. Но и ему жить осталось недолго. Стремительный прогресс в области высоких технологий и растущие потребности пользователей требуют новых, более емких носителей.

Первой ласточкой стали двуслойные DVD. В них информация записывается на двух разных уровнях, обычном нижнем и полупрозрачном верхнем. Изменяя фокусировку лазера, можно считывать данные с обоих слоев поочередно. Такие DVD вмещают 8,5 Гб информации. Затем появились двуслойные двусторонние DVD. У этих дисков обе стороны рабочие и содержат по два слоя информации. Вместимость носителей выросла до 17 Гб.

На этом показателе был достигнут потолок DVD-технологии. Дальнейшее увеличение количества слоев представляется излишне сложной проблемой, толщина диска все же ограничена, так что впихнуть туда что-то очень трудно. Кроме того, даже при двуслойной системе было множество нареканий на качество считывания информации, а уж сколько ошибок могут выдать гипотетические трехслойные DVD - и подумать страшно.

Производители решили (временно, конечно) проблему увеличения емкости путем создания нового формата. Вернее, сразу двух: HD-DVD и Blu-ray. Обе технологии используют синий лазер с длиной волны в 405 нм. Как мы уже сказали, уменьшение длины волны позволяет также уменьшить минимальный размер ячейки памяти и, следовательно, увеличить плотность записи. Появление сразу двух новых типов дисков спровоцировало так называемую «войну форматов», длившуюся около двух лет. В конечном итоге, несмотря на определенные преимущества, HD-DVD этот бой проиграл. По мнению многих экспертов, главную роль в этом сыграла исключительно мощная поддержка американскими киностудиями формата Blu-ray.

«Голубой луч» сейчас является единственным оптическим носителем информации высокой емкости, который можно найти в продаже. Диски 23, 25, 27 и 33 Гб. Существуют и двуслойные образцы объемом 46, 50, 54 и 66 Гб.

DVD

Годы жизни: 1996 - по сей день

Объем памяти: до 17,1 Гб

Самый популярный носитель информации: подавляющее большинство музыки, фильмов и разнообразного софта распространяется именно на DVD

– Морально устаревшая технология

HD-DVD

Годы жизни: 2004–2008

Объем памяти: до 30 Гб

Высокая емкость плюс относительно невысокая цена за счет более дешевого производства

– Отсутствие поддержки американской киноиндустрии.

Blu-ray

Годы жизни: 2006 - по сей день

Объем памяти: до 66 Гб

Высокая емкость носителей, поддержка голливудских «монстров»

– Большая стоимость приводов и носителей, поскольку для производства требуется принципиально новое оборудование

ГОНКА ГИГАБАЙТОВ

Рынок дисковых накопителей - весьма лакомый кусочек. Поэтому уже в ближайшее время следует ожидать если не смещения Blu-ray с лидирующих позиций, то новой войны форматов.


Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Это дает производителям основание утверждать, что уже достигнутый потолок в 3,6 Тб - далеко не предел.

Существует целый ряд технологий, претендующих на кошельки пользователей. Например, HD VMD (High Density - Versatile Multilayer Disc). Этот формат был представлен в 2006 году малоизвестной британской компанией New Medium Enterprises. Тут производитель пошел по пути увеличения количества записываемых слоев в одном диске - их аж 20. Благодаря этому максимальная емкость HD VMD на сегодняшний день составляет 100 Гб. В целом маловероятно чтобы небольшая New Medium Enterprises сумеет всерьез потеснить мультимедиагигантов. Но благодаря заявленной низкой стоимости дисков и приводов к ним (за счет использования более дешевого красного лазера с длиной волны 650 нм) теоретически британцы могут рассчитывать на определенную популярность своей продукции. Если она, конечно, вообще доберется до рынка.

Еще один претендент - формат Ultra Density Optical (UDO). Разработка началась еще в июне 2000 года, и сейчас это уже вполне готовое устройство, доступное на рынке. Здесь была сделана ставка на увеличении точности фокусировки луча. При длине волны лазера в 650 нм диск UDO вмещает от 30 до 60 Гб информации. Существуют также носители, использующие синий лазер (405 нм), и в этом случае максимальный объем UDO достигает 500 Гб. Но за все нужно платить: увеличение точности лазера стало причиной серьезного удорожания приводов. Сами носители выпускаются в виде 5,35-дюймового картриджа с диском внутри (для защиты от внешних воздействий) и продаются по цене в $60-70. На сегодняшний день технология UDO используется в основном крупными компаниями для архивации информации и создания резервных копий данных.

HD VMD (High Density - Versatile Multilayer Disc)


Годы жизни: 2006 - недалекое будущее

Объем памяти: до 100 Гб

Высокая емкость, относительно низкая стоимость

– Отсутствие поддержки крупных игроков рынка, что наверняка станет причиной смерти формата

UDO (Ultra Density Optical)


Годы жизни: 2000 - по сей день

Объем памяти: до 120 Гб

Хорошая емкость

– Высокая стоимость приводов и носителей, ориентация на узкоспециализированный рынок устройств архивации данных

ГОЛОГРАФИЯ ЖЖЕТ

Несмотря на обилие форматов оптических дисков, уже существует технология, которая в будущем наверняка оставит за бортом всех конкурентов. Речь идет о голографической записи. Преимущества этой технологии и ее потенциал огромны. Во-первых, если в обычных оптических дисках информация записывается на слой при помощи отдельных ячеек информации, то в голографической памяти данные распределяются по всему объему носителя, причем за один такт может записываться несколько миллионов ячеек, благодаря чему скорость записи и чтения резко увеличивается. Во-вторых, за счет распределения информации в трех измерениях максимальная емкость носителя достигает действительно заоблачных высот.

Работы в этом направлении начались около десяти лет назад, и на сегодняшний день существует вполне внятная технология, по которой на стандартных размеров диск можно записать 1,6 Тб информации. При этом скорость чтения составляет 120 Мб/с.

Принцип действия голографической записи реализован следующим образом. Лазерный луч при помощи полупрозрачного зеркала разделяется на два потока, имеющих одинаковую длину волны и поляризацию. Пространственный световой модулятор, представляющий собой плоский трафарет, преобразует цифровую информацию в последовательность прозрачных и непрозрачных ячеек, которые соответствуют логическим единице и нулю. Сигнальный луч, пройдя через эту решетку и получив порцию информации, проецируется на носитель. Второй луч - опорный - под углом падает в ту же область диска. При этом в точках, где опорный и сигнальный лучи пересекаются, происходит сложение амплитуд волн (интерференция), в результате чего лучи совместными усилиями прожигают светочувствительный слой, фиксируя информацию на носителе. Таким образом за один такт записывается сразу вся информация, которую может осилить разрешающая способность светового модулятора. На сегодняшний день это порядка миллиона бит за раз.

Считывание данных происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Уникальной особенностью голографического метода является возможность записи огромного количества информации практически в одну точку. Благодаря этому можно эффективно использовать весь объем носителя. Практический потолок емкости голографических дисков точно неизвестен, но производители утверждают, что уже достигнутый ими потолок в 3,6 Тб - далеко не предел.

Голографические диски


Годы жизни: недалекое будущее

Объем памяти: до 1 Тб

Очень, ну очень высокая емкость при сохранении компактных размеров носителя

– Время покажет

HDD + ЛАЗЕР

В 2006 году Даниэл Стэнсю (Daniel Stanciu), работавший над своей докторской диссертацией, и доктор Фредерик Ханстин открыли способ изменения полярности магнита при помощи светового излучения. Надо сказать, что раньше это считалось невозможным в принципе. Неудивительно, что Даниэл Стэнсю с триумфом защитил докторскую диссертацию, а сама технология, получившая довольно странное название - чистооптическая инверсия намагниченности, - уже нашла потенциальное применение.

Итак, при помощи лазерного луча можно намагничивать домены жестких дисков, т. е. выполнять ту же самую работу, над которой сейчас трудится пишущая головка, но намного быстрее. Скорость записи на обычный жесткий диск не превышает 100–150 Мбит/с. В прототипе «лазерного» жесткого диска этот показатель на сегодняшний день составляет 1 Тбит/с или 1 000 000 Мбит/с. Ученые уверены, что это не предел - они рассчитывают увеличить скорость записи до 100 Тбит/с. Кроме того, при помощи лазера можно существенно увеличить плотность записываемой информации, что, теоретически, делает лазерные жесткие диски одной из наиболее перспективных технологий хранения и записи данных.

Но на сегодняшний день нет никакой информации об устройстве считывающей головки для таких HDD. При помощи лазера можно только записывать информацию. Фиксировать намагниченность доменов он не может. Следовательно, для чтения нужно будет использовать стандартные магнитные головки. Кроме того, не стоит забывать, что и скорость записи, и скорость чтения HDD напрямую зависят от скорости вращения дисков. Так что оптимистические заявления ученых выглядят несколько странно. Для достижения показателя в 1 Тбит/с нужно раскрутить диск до таких скоростей, что он, вероятно, разлетится на куски под действием чудовищной центробежной силы или вовсе сгорит от трения об воздух. Конечно, использование определенной оптической системы перенаправления луча позволяет вовсе отказаться от вращения диска при записи. Но чтение-то производится по-прежнему магнитной головкой, которой жизненно необходимо скользить над поверхностью диска.

Словом, перспективы технологии чистооптической инверсии намагниченности хоть и привлекательны, но весьма туманны.

Лазерный HDD

Годы жизни: недалекое будущее

Объем памяти: время покажет

Высокая плотность и скорость записи информации, в перспективе - возможность уменьшения количества движущихся частей диска

– Слишком много вопросов, на которые никто не дает ответов

БЛЕСТЯЩЕЕ БУДУЩЕЕ?

Диски дисками, но обычному пользователю бывает жизненно необходим компактный, емкий и, главное, простой в использовании накопитель информации. Сегодня для этой цели используют флэшки, или, говоря по-научному, USB Flash Drive. Флэш-память этого устройства представляет собой массив транзисторов (ячеек), каждый из которых может хранить один бит информации.

У подобного носителя есть масса преимуществ. Флэшки, в отличие от своих предшественников, не имеют движущихся деталей. Они компактны, надежны и способны хранить довольно солидные объемы информации, да и производители неустанно трудятся над увеличением их емкости. Существуют флэш-накопители, вмещающие 8, 12 и даже 64 Гб данных. Правда, подобные игрушки по стоимости конкурируют с первоклассным компьютером в комплектации «все включено», но это временное явление. Еще недавно за флэшку емкостью 1 Гб просили целое состояние, а сейчас она доступна каждому студенту, получающему стипендию.

Еще одно преимущество флэш-накопителя - простота в использовании. Флэшка подсоединяется к USB-порту компьютера, операционная система обнаруживает новое устройство, а содержимое флэшки отображается в виде дополнительного диска в системе. Соответственно и работа с файлами не отличается от работы с обычным жестким диском. Не требуется никаких дополнительных программ, не нужно ломать голову над совместимостью устройств и форматов, всматриваться в производителя устройства, гадая, подойдет ли оно к компьютеру или нет.

Флэш-память надежна, не боится вибраций, не шумит, потребляет мало энергии, скорость обмена информацией приближается к показателям стандартных жестких дисков. Флэш-память, за счет отсутствия движущихся частей, обладает высокой надежностью, не боится вибраций, не шумит и потребляет мало энергии. Преимущества очевидны.


Считывание данных при голографическом методе происходит при помощи опорного луча, который, проходя сквозь тело носителя, проецирует записанную голограмму на светочувствительный слой, а уже тот преобразует падающую на него «решетку» в последовательность нулей и единиц.

Сегодня уже выпускаются портативные компьютеры, в которых вместо привычных HDD установлены чипы SSD (Solid State Drive), так называемые твердотельные накопители на основе флэш-памяти. Принципиально от обычных флэшек такие запоминающие устройства ничем не отличаются. Ноутбуки с SSD, благодаря низкому энергопотреблению, способны работать почти в два раза дольше, чем оборудованные обычными жесткими дисками. Однако у флэш-памяти есть и свои серьезные недостатки. Во-первых, скорость обмена данными в SSD пока еще существенно отстает от показателей жестких дисков. Но эта проблема будет решена в самом ближайшем будущем. Второй недостаток значительно серьезней. Флэш-память в силу конструкции выдерживает ограниченное число циклов стирания и записи - порядка 100 000 циклов. Не вдаваясь в технические подробности, можно поставить диагноз: процесс записи и стирания данных ведет к физическому износу ячеек памяти на электронном уровне. Впрочем, взяв в руки калькулятор и проделав простейшие вычисления, пользователь светлеет лицом и радостно заявляет, что даже если каждый день десять раз в день полностью перезаполнять флэшку, 100 000 циклов хватит на 27 лет! Но на практике флэш-память (например, карта памяти в фотоаппарате), интенсивно используемая каждый день, может выйти из строя уже через два-три года эксплуатации.

Flash-память

Годы жизни: 1989 - по сей день

Объем памяти: до 80 Гб

Простота в использовании, низкое энергопотребление, надежность

– Ограниченное число циклов записи/стирания

Сегодня прогресс в области компьютерных технологий вообще и запоминающих устройств в частности стремительно меняет мир.

В будущее заглядывать - дело неблагодарное, но можно с уверенностью утверждать: если производители не смогут победить единственный серьезный недостаток флэш-памяти, не сумеют достичь необходимого пользователям объема HDD или создать простой и надежный голографический диск, они неизбежно придумают другой способ хранения информации.

Дешевый, надежный, компактный, быстрый.

Рекомендуем почитать

Наверх